
C Programming under Linux

P2T Course, Martinmas 2003–4
Linux Lecture 1

Dr Graeme A Stewart

Room 615, Department of Physics and Astronomy

University of Glasgow

graeme@astro.gla.ac.uk

P2T: Linux Lecture 1 – p.1/28

http://www.physics.gla.ac.uk/
http://www.astro.gla.ac.uk/people.php?user=graeme

Summary

Course Overview

A Shorter History of Linux and Unix

The Linux Kernel

User Space Programs

Kernel Boot Process

Command Line Survival

Files and Directories

Logout

http://www.physics.gla.ac.uk/p2t/

$Id: linux-lecture-01.tex,v 1.13 2004/01/21 14:49:31 graeme Exp $

P2T: Linux Lecture 1 – p.2/28

http://www.physics.gla.ac.uk/p2t/

Course Overview

1. What is Linux?

2. The Shell
(a) Basic Commands
(b) Shell Variables and Startup
(c) Control Stuctures and Shell Programming
(d) More Advanced Commands

3. Editor Environment
(a) Emacs Basics
(b) Customising Emacs

4. Makefiles

5. Debuggers

6. Building from Source (time permitting)

P2T: Linux Lecture 1 – p.3/28

In The Beginning...

The origins of Linux are in an operating system called UNICS
c. 1969.

This system developed into UNIX through the 70s – in parallel
with a new programming language written for its operating
system, C.

Unix was developed initially on hugely expensive computers
costing millions of $, £ or Euros.

Unix became very popular in academic institutions, where a
pioneering spirit of cooperation existed – thus Richard
Stallman was able to establish the GNU (Gnu’s Not Unix)
software project in 1983, which developed free programs
mainly for unix machines.

However as computer hardware got cheaper and better even
lowly PCs were capable of running unix-like systems – if they
were 386s. (And Linux still runs usefully on such humble
machines!)

P2T: Linux Lecture 1 – p.4/28

Linux is Born

In 1991, on comp.os.minix, a discussion group for a limited
unix clone called minix, a Finnish student called Linus Torvalds
announced he had created a new unix clone called Linux – this
was version 0.01!

He invited other people to join in the effort to make Linux better
– calling on the same spirit of cooperation that had made the
GNU software tools possible.

Linux was a hit – soon Linux had hundreds of developers and
within a few years it had reached a 1.0 release.

13 years later, and at version 2.4, Linux is one of the most
successful software projects ever, having produced a fast,
secure, stable operating system. Anyone can view the source
code of Linux and modify it if they want.

P2T: Linux Lecture 1 – p.5/28

So what is Linux?

All computers run a core program, called the Kernel. This
program controls access to the hardware, manages other
programs and allocates system resources.

Linux is a kernel program written by Linus Torvalds and many
other people.

It is a ‘unix-like’ kernel, and runs on a great variety of
processors: x86, sparc, alpha, itanium, opteron, etc. It now
supports almost every type of hardware which is found in these
architectures: PCI buses, network cards, video cards, hard
drives and controllers, etc.

It is licensed under the GNU Public License, which ensures
that no-one can remove users’ rights to see, modify and
redistribute the kernel code.

P2T: Linux Lecture 1 – p.6/28

Where Linux fits into a Computer

Linux, as with any kernel, fits in between the hardware and the
programs running on the machine:

Above the Linux kernel user programs run – and above them there
is (usually) a user!

P2T: Linux Lecture 1 – p.7/28

GNU/Linux Distributions
On its own the kernel does nothing of great use for an end user.
Many other programs are needed. Linux plus a minimal set of
useful programs form an operating system. Various companies and
teams have made Linux Distributions, which include a rather more
extensive set of programs. Some of the most popular distributions
are:

Debian GNU/Linux (running on our cluster)

RedHat Linux

SuSE

Mandrake

When we speak of ‘Linux’ on this course this is usually shorthand
for ‘the GNU/Linux operating system’. However, the contribution of
the GNU and FSF (‘Free Software Foundation’) projects to making
Linux useful (in fact, making Linux possible!) should not be
underestimated.

P2T: Linux Lecture 1 – p.8/28

Hierarchy of Programs

Programs which run in ‘user space’ – that is all programs which are
not the kernel – also form a hierarchy:

certain programs provide functionality for other programs

programs have different privilege levels and permissions to get
access to low level features of the operating system

P2T: Linux Lecture 1 – p.9/28

Functionality Hierarchy

Try: $ ps aux

Low level operating system programs: init, kswapd,
kapmd

Access and authentication services: getty, login, sshd

Basic user enviroment (a shell): bash, csh, ksh

Lower level user commands: ls, cd, grep, gcc

Low level graphics server: X

Graphical User Interface Layer: KDE suite (kinit, knosole;
Gnome (panel, sawfish)

End user applications: mozilla, emacs, kate, kspread

P2T: Linux Lecture 1 – p.10/28

Authorisation Hierarchy

1. root: The root user in unix is special, and programs running
with root permissions can do things others cannot:

read or write any file

access any hardware device

perform privileged network operations

2. other programs: have restricted permissions, generally
expressed through the file system.

The authorisation system in unix is, in fact, quite straightforward:
root processes can do anything, other processes may have
elevated privileges granted to them by root.

P2T: Linux Lecture 1 – p.11/28

Getting Started

When a Linux machine is booted (on PC architecture) the BIOS
passes control to the kernel (usually via a bootloader). The kernel
then initialises the system’s hardware. Here’s an excerpt from a
linux kernel boot:
Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4

ide: Assuming 33MHz system bus speed for PIO modes; override with idebus=xx

hda: IC25N020ATCS04-0, ATA DISK drive

hdc: HL-DT-STDVD-ROM GDR8081N, ATAPI CD/DVD-ROM drive

ide0 at 0x1f0-0x1f7,0x3f6 on irq 14

ide1 at 0x170-0x177,0x376 on irq 15

hda: attached ide-disk driver.

hda: host protected area => 1

hda: 39070080 sectors (20004 MB) w/1768KiB Cache, CHS=2584/240/63

Partition check:

/dev/hda: p1 p2 p3 p4 < p5 p6 p7 >

Initializing Cryptographic API

[...]

P2T: Linux Lecture 1 – p.12/28

Logging in

Once the kernel has started, it begins to run userspace programs
(in ‘protected mode’). The first program it runs is called init. This
starts the system boot process, beginning daemons, services and
other programs; configuring the network and performing other
initialisations. Once the system is ready init will start a getty,
which presents a login prompt:

Debian GNU/Linux stable/woody vc/1

alpha login: graeme

Password: ********* # These *s don’t actually appear!

Welcome to Debian GNU/Linux

alpha$ _

If you login sucessfully you get a shell prompt :
alpha$

P2T: Linux Lecture 1 – p.13/28

Graphical Login

Most Linux machines won’t actually stay at the console login, they’ll
also start a graphical login manager :

However, when something goes wrong, or someone else is logged
on at the graphical console, it’s important to know that the plain
console logins are always there. Pressing
CTRL-ALT-F1,2,3,4,5,6 will switch to virtual console 1–6,
(even when a graphical session is running). ALT-F1-6 is sufficient
to change consoles and ALT-F7 will switch back to X.

P2T: Linux Lecture 1 – p.14/28

Command Line Survival++

alpha$ help?

bash: help?: command not found

A lot of your interaction with Linux will be through the command
line of the shell – it’s important to know how to use it properly.

At its simplest the shell will read a command that you type and
give you back the results:
alpha$ date

Wed Oct 1 15:43:22 BST 2003

We’ll concentrate on the unix shell called bash, which is the
standard shell in Linux distributions.

Let’s now see the some of the core commands you’ll need to work
with the shell on Linux, and discuss some of its fundamental
features.

P2T: Linux Lecture 1 – p.15/28

Anatomy of a Shell Command I

Here’s a typical command typed at the shell prompt:
$ ls -l foo.c

ˆ ˆ ˆ \-> "argument"

| \ \-> "option" # Also called a "switch"

\ \-> "command"

\-> "prompt"

The shell ‘prompts’ for input by displaying a standard text
string. The prompt in bash can be customised, but should
always end in a $.

The first thing typed by the user is the command – in this case
ls, which lists files.

There can then follow options – these modify the way that the
command works and are identified by a dash. In this example
-l signals a ‘long listing’.

Then there follow arguments – more infomation passed to the
command to process. Often arguments are files that the
command will operate on; in this case foo.c.

P2T: Linux Lecture 1 – p.16/28

Anatomy of a Shell Command II

What happens when we ask the shell to execute our command?
$ ls -l foo.c # Press RETURN

-rw-r--r-- 1 graeme knigits 3392 2003-10-11 22:48 foo.c

$

Once you’ve finished typing a command press RETURN
(aka ENTER) and the shell will execute your command.

In this case it ‘long lists’ the file foo.c, giving us detailed
information about the file (we’ll explain the details of just what
ls is telling us later).

After the shell has finished with that command it prints another
prompt and will await further input.

P2T: Linux Lecture 1 – p.17/28

Directories

Here’s what you need to know to move around directories:

ls foo list contents of a directory foo

cd foo change directory to foo

pwd print current working directory

And to create and destroy directories:

mkdir foo make directory foo

rmdir foo remove directory foo

N.B. A directory must be empty for rmdir to work.

P2T: Linux Lecture 1 – p.18/28

Paths I

All of the directory commands above can take path arguments. If
no argument is present they, generally, operate on a sensible
default.

ls list the current working directory

ls foo list contents of a directory foo, (which is a
subdirectory of the current working directory) [1]

ls foo/bar list the contents of directory bar, which is a
subdirectory of foo [1] (N.B. The directory separator in unix is
‘/’)

ls /foo list the contents of directory foo, which is a
subdirectory of the root directory

[1] Any of the arguments to ls can be files, rather than directories,

in which case just those files are listed.
P2T: Linux Lecture 1 – p.19/28

Paths II

The root directory (/) lies at the top of the whole unix filesystem:

directory

file/

usr etc home

bin fiona kaisergraeme

admin teachingnetwork

root directory

/home/graeme/teaching/lecture1

plan

noteslecture1

cwd

Any path which begins with ‘/’ is called an absolute path:
/home/graeme/teaching/lecture1

Any path which does not start with ‘/’ is called a relative path:
teaching/lecture1 Relative paths are always accessed with
respect to the current working directory.

P2T: Linux Lecture 1 – p.20/28

Some Special Directories

Notice in the last example how the three users of the system had
their home directories in /home/graeme, /home/fiona and
/home/kaiser.
These are examples of users’ home directories. Under a Linux
system a user stores (almost) all their files in their home directory.
As it’s so important the shell assigns a special character to mean
‘my home directory’: ˜.
$ ls ˜/bin/frobnicate

/home/graeme/bin/frobnicate

User foo’s home directory is ˜foo:
$ ls ˜foo/bar.c

/home/foo/bar.c

The absolute path to your home directory is also stored in a shell
variable called $HOME – more about variables later.

P2T: Linux Lecture 1 – p.21/28

Some More Special Directories

Every directory has two special directory entries “.” and “..”.
These are:

“.” this directory

“..” this directory’s parent
$ pwd

/home/graeme/life/work

$ ls

research teaching

$ ls -a

. .. research teaching

$ ls -a ..

. .. play sleep work

$ cd ../play

$ pwd

/home/graeme/life/play

Paths can have an arbitary number of .. and . path elements.

P2T: Linux Lecture 1 – p.22/28

Hidden Files and Directories

Notice that the -a option (view all) to ls had to be used to see the
special . and .. directories.
In fact any file or directory which starts with a dot is hidden, and ls
will not list it by default.
Programs which require, or enable, customisations can store these
in such hidden files – consquently inside a user’s home directory
there will be many, many hidden files. Of particular note are:

.bash_profile, .bashrc customisation files for bash.

.emacs customisation files for the emacs editor.

.kde a directory containing options and settings for the KDE
graphical environment.

P2T: Linux Lecture 1 – p.23/28

Files: Viewing

A lot of the basic file manipulation commands in unix are oriented
towards the manipulation of text files.

cat foo print file foo

cat foo bar concatenate (print) files foo and bar

less foo display the file foo through the pager

less is invaluable for viewing files. It takes more than one page of
input and displays it page by page on the screen – SPACE moves
down by 1 page and the PAGE UP/DOWN and arrow keys work as
expected. Type q to quit.
Typing /foo will search forwards for the next occurence of foo.
Typing ?foo will search backwards.
Type h in less for more options.

P2T: Linux Lecture 1 – p.24/28

Files: Moving and Copying

To move and copy files in Linux use mv and cp:

mv foo bar Move (rename) the file foo as bar. (bar is
overwritten, if it exists.)

mv foo /tmp Move the file foo into directory /tmp (ends up
as /tmp/foo).

cp foo bar Copy foo to bar. (Again, bar is overwritten.)

cp foo /tmp Copy the file foo into directory /tmp

Note that mv and cp behave differently if the final argument is a file
or a directory. If the last argument is a directory one can give
multiple files to operate on:
$ ls

foo bar

$ mv foo bar /tmp

$ ls

$ ls /tmp

foo bar

P2T: Linux Lecture 1 – p.25/28

Files: Removing

The rm command will remove a file:
$ ls

foo bar

$ rm foo

$ ls

bar

Note that unix does not blow whistles, ring bells, pop up alerts or
phone your mother for confirmation when you ask for a file to be
deleted. It just does it – generally unix does not patronise its users.
If you want to get confirmation then use the -i option:
$ rm -i foo bar

rm: remove ‘foo’? y

rm: remove ‘bar’? n

$ ls

bar

The -r option recurses through subdirectories and the -f options
forces removal (e.g. of directories). (rm -fr is very useful, but
potentially dangerous!)

P2T: Linux Lecture 1 – p.26/28

Logging Out

When you have finished working with a shell you can logout with:

1. The command exit.

2. The command logout – but only if you are in a login shell.
(Logins on virtual consoles are login shells, those in X, the unix
windowing system, are not.)

3. Typing CTRL-D – as long as the shell is not set to IGNOREEOF.

If you are in a graphical session, there’s usually a logout button or
option:

P2T: Linux Lecture 1 – p.27/28

Copyright

All these notes are Copyright (c) 2003, Graeme Andrew Stewart.

Permission is granted to copy, distribute and/or modify this

document under the terms of the GNU Free Documentation License,

Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and

no Back-Cover Texts.

A copy of the license is here:

http://www.physics.gla.ac.uk/p2t/fdl.txt

P2T: Linux Lecture 1 – p.28/28

http://www.physics.gla.ac.uk/p2t/fdl.txt

	Summary
	Course Overview
	In The Beginning...
	Linux is Born
	So what is Linux?
	Where Linux fits into a Computer
	GNU/Linux Distributions
	Hierarchy of Programs
	Functionality Hierarchy
	Authorisation Hierarchy
	Getting Started
	Logging in
	Graphical Login
	Command Line Survival++
	Anatomy of a Shell Command I
	Anatomy of a Shell Command II
	Directories
	Paths I
	Paths II
	Some Special Directories
	Some More Special Directories
	Hidden Files and Directories
	Files: Viewing
	Files: Moving and Copying
	Files: Removing
	Logging Out
	Copyright

