
1

1

Linux Mint 5 Day Essentials Introduction Course

Introduction

Why an introductory Linux admin, command line-oriented eBook in 2023 when GUIs are so

powerful now and Windows is still the dominant desktop OS?

Well, lots of reasons, but for anyone looking for a career in IT, having some Linux skills is an

obvious bonus and as it is a free OS that has programmes written for it that cover almost any use

anyone would want. It is a cheap way into the IT industry for students on a budget if nothing else,

as it runs on almost all hardware, but you can research what laptops or hardware - like wifi cards - it

doesn’t have built-in drivers for, on the web.

Linux has never been so popular, as it’s a very stable, truly multitasking OS, and I hope to show you

some of its incredibly low overhead versatility, running as it is on my 15-year-old, dual-core laptop,

writing this text – from basic Desktop user admin, to software installation, file system security

concepts, basic programming environments for Python, C and Java, and very importantly, backups.

All in 5 “days”, more or less... depending on you.

“96.3% of the top one million web servers are running Linux.

Among the websites that run on Linux, remarkable ones include Twitter, Yahoo, and eBay, speaking

volumes about Linux's popularity. The internet is increasingly dependent on Linux — 96.3% of the

top one million web servers use Linux, server statistics indicate. Windows (1.9%) and FreeBSD

(1.8%) share the rest.

(ZDNet)”

https://truelist.co/blog/Linux-

statistics/#:~:text=The%20internet%20is%20increasingly%20dependent,1.8%25)%20share%20the

%20rest.

This eBook is designed to give an introductory to intermediate level insight into some immediately

useful tasks that a Linux-based system offers, along with some technical insight to the topics under

discussion, as relevant, to give an idea of some aspects of System Administration.

It is presumed the reader has a laptop or desktop available with an Ubuntu-based Linux distribution

installed and has “root” (Administrator) level access, as the installation of a particular OS is not

covered in this text. The examples shown are using a Linux Mint, Ubuntu-based installation.

You can download installation files for pen drives from Linuxmint.com

Depending on the reader’s prior knowledge and ability, the material may need more than five days

to cover and digest, copying the command examples into your own system Terminal.

The concept behind the eBook is to enable an interactive experience for the reader via copying and

pasting the commands between this eBook and the Linux Terminal. This is best achieved via some

https://truelist.co/blog/linux-statistics/#:~:text=The internet is increasingly dependent,1.8%25) share the rest.
https://truelist.co/blog/linux-statistics/#:~:text=The internet is increasingly dependent,1.8%25) share the rest.
https://truelist.co/blog/linux-statistics/#:~:text=The internet is increasingly dependent,1.8%25) share the rest.
http://linuxmint.com/

2

2

of the many Linux-based eBook readers, as the Kindle reader format text copy function is a bit

awkward, but worse, only available for Windows and Apple systems, not Linux.

The Kindle web reader does not allow text copy due to Amazon’s proprietary book formatting and

to prevent book copyright infringement, so no use.

The material can be viewed as a basic introduction to System Administration for any Linux

platform as well as Windows and Apple systems, from a principles viewpoint, even if the

Terminal/Shell commands may be very different between systems.

Operating Systems have to run from a file system of some sort, which requires at least a basic

understanding of file system permissions, however implemented, whether the file system is

Windows NTFS, Linux Ext4, Apple File System (APFS) or one of many others.

These permissions are absolutely key to understanding how security and access to the file system is

implemented for all users, so two days – days 3 and 4 – are dedicated to explaining key aspects of

file permissions, with examples, to understand their impact on both local and network access to the

filesystem.

The book format comprises GUI / Terminal examples and basic explanations of:

Day 1 - Software Installation, moving around folders, listing file attributes, “root” and sudo users.

Day 2 - Users/Groups, piping hashed password files, pattern searching, AWK column stripping.

Day 3 - File Permissions

Day 4 - File Permissions Continued and Network Access via Samba

Day 5 – Non-Linux Repository Software Package Installation, Programming

Scripts for Python/Java/C examples, Rsync Backup example.

In most cases I will show methods using the Graphical User Interface (GUI) then the equivalent

Terminal command line (often much quicker and has system resource overhead benefits) to aid a

deeper understanding and appreciation of the genius of the Unix based file system design that Linux

is based on.

Commands are in blue. Output is in red. Other links and info are in green.

3

3

Contents

Day 1: Software Installs, Moving Around the Filesystem, File Info and Root User p4

Day 2: Admin, Users and Groups p17

Day 3: File and Directory Permissions p32

Day 4: File and Directory Permissions, Network Access via Samba p49

Day 5: Package Installation, Programming Environments, Backups p51

4

4

Day 1: Software Installs, Moving Around the Filesystem, File Info and Root User

The Desktop

A typical Mint Desktop may look similar to:

Some key commands to learn to help most OS system usage:

Tab Key - completes available command line options in consoles

F3 - find text in some apps and pages like this webpage!

F5 - browser and Konqueror based apps page refresh (or e.g. http://192.168.1.2/server-

status?refresh=5)

Ctrl-C - stops nearly all running command line progs

CTl-Alt-BackSpace - kills and respawns X window on Ctrl-Alt-F8 window

Ctrl-F1 - App help?

CtrlZ - undo

CtrlX - cut

CtrlC - copy text etc (GUI/App/R click)

CtrlV - paste

Ctrl-S - stops fast scroll in Terminal

Ctrl-T for new tab in browser

Ctrl + or - to magnify/shrink text (Ctrl+wheel)

Ctrl A/E (move cursor to start/end of Terminal cmd line)

5

5

Ctrl U (deletes Terminal cmd line)

Ctrl Z (pause running Terminal cmd line job)

Ctrl-Alt-F1 to F7 Linux terminals and Dtop GUI (F8 usually)

Esc - close last open box etc.

Alt-F1 - Workspaces

Alt-F2 - GUI run Terminal cmd box

Alt-F3 - ?

Alt F4 - closes active window/app

Alt-F5 - reduces window size to pre max

Print Screen saves screenshot to Pictures in Mint

Alt-PrntScr - saves active window to Pictures in Mint

Ctrl-Alt-Delete - close session option from GUI or reboot from F1-7 terminal

Installing Software

The Menu button, bottom left, where you can search for installed programmes and others to install

according to type using the graphical Software Manager:

6

6

For example, if you searched for a well-known Terminal text editor called Vim, the software will

show you any available items that match your search:

7

7

To accomplish the same task in the Terminal command line, go to the Menu button and search

Terminal, then click to open it:

When the terminal is open, return to this page and highlight the blue command below, then paste it

into the terminal using the middle mouse button or wheel press to paste it into the Terminal.

Or, use slower right click/copy/paste commands:

sudo apt install vim

Enter your user password to complete the command:

[sudo] password for stevee:

In my case, Vim is already installed so no software will be downloaded.

Tab Completion

A really useful aspect of the command line is called Tab Completion, often used to see what

software is available should you not know the full name or version of a particular software item, or

command, you want.

You hit the Tab key after the partial software name, command or directory name, for example; if

you Tab when the Terminal cursor is at the end of the last command, vim, it will auto complete all

possible options for vim related software that is available in the online Linux repositories:

8

8

You can change Terminal background and text colours in the Edit/Preferences menu.

File System Orientation

A filesystem is a root or tree structure, with the top of the tree being designated by the forward slash

symbol (/) and can be viewed as such within the Terminal using the “tree” command (but first needs

to be installed).

This can be accomplished in the terminal by using the Up arrow to bring the last vim install

command back (from a command history file in the system: history), then backspacing to replace

the word “vim” with “tree”:

sudo apt install tree

9

9

10

10

Once the tree program is installed it can be run where all subdirectories of the root folder (/) are

shown, but this will scroll for a long while as it will show ALL subdirectories of the whole OS! To

limit this to just your home directory, we type a space and a full stop after the tree command:

tree .

This partial view shows the file structure subfolder/file relationship:

The full stop after the command is a file system designator for a branch point (inode) in the

filesystem two directories above where you are in the tree. So, in file system vertical terms, it can

be visualised:

.

..

current working directory

This is why you can move up (cd = change directory) one directory from where you are, using:

cd ..

The two dots (..) represent the directory above you.

So, how do you know where you are in a file system structure? Use the command pwd, or present

working directory:

11

11

stevee@laptop:~$ pwd

/home/stevee

This tells me I am in my home directory, which in the GUI view is:

Any time you lose track of where in the tree structure you are, you can use pwd to find yourself, or

type in “cd” for change directory, which, with no further arguments after it will take you back to

your Home directory. This is a key command for moving around the file system, IF you have the

permissions to enter a particular folder as a particular user with particular privileges, but more on

that in days 3-4. e.g.:

Move into your Documents folder (you can use the Tab key, with a space after the cd command, to

see all available folder options):

cd (TAB key)

12

12

The Documents folder is listed, so you can type:

cd Doc[TAB]

and Tab Completion will complete the only available folder name - Documents - for you.

On Enter, you will cd into that folder.

Use pwd to confirm for yourself by typing, or using the UP arrow to bring pwd back from the

command history:

13

13

Commands in Linux can be run serially with the appropriate semicolon separators and will output in

order:

ls; whoami; pwd;

14

14

From now on, as you have the idea of the Terminal view, I will mostly paste the output text to save

image page space. The previous commands in order were:

stevee@laptop:~/Documents$ ls; whoami; pwd;

'All My IT Tech Posts.pdf' 'Day 5 Package Installation, AV, Backups'

 Contents.docx FundamentalsofValveAmplifiers.docx

 Cover.jpg 'Mint Course.docx'

'Day 1 Mint Course' MintCourse.tar.gz

'Day 2 Users and Groups' Scripts

'Day 3 File Permissions' Titles.txt

'Day 4 File Perms Cntd'

stevee

/home/stevee/Documents

This shows the listing of all the files in the directory; who am logged in as (stevee); and the present

working directory (/home/stevee/Documents).

The first command “ls” means “list” and can be followed by different “switches” to give more

information about the files listed by it.

Most Linux commands can have a -h or --help switch to show what options are available for that

command, or you can read the manual page for that command e.g.:

man ls

15

15

q to quit

So, for the ls command, we can view:

stevee@laptop:~$ cd; ls -l

total 40

drwxrwxr-x 2 stevee stevee 4096 Nov 1 18:40 'Calibre Library'

drwxr-xr-x 4 stevee stevee 4096 Nov 2 18:13 Desktop

drwxr-xr-x 8 stevee stevee 4096 Nov 2 20:42 Documents

drwxr-xr-x 3 stevee stevee 4096 Nov 2 14:10 Downloads

drwxr-xr-x 3 stevee stevee 4096 Oct 18 17:30 Music

drwxrwxr-x 9 stevee stevee 4096 Oct 27 21:07 MyShare

drwxr-xr-x 2 stevee stevee 4096 Nov 2 19:12 Pictures

-rw-rw-r-- 1 stevee stevee 57 Oct 28 10:32 Replaces

drwxr-xr-x 2 stevee stevee 4096 Aug 2 13:13 Videos

drwxrwxr-x 2 stevee stevee 4096 Aug 2 13:13 Warpinator

From left to right, the 7 columns mean:

File permissions: Replication factor: User: Group: bytes size on disk: File creation date/time:

Folder/filename

I’ll explain the drwxrwxr-x columns file permission blocks in detail on Days 3 and 4.

16

16

The Replication factor (default = 3) is the number of copies a file has in the filesystem to guard

against corruption.

Root and Sudo Users

The second serial command was whoami. It simply tells you who you are logged in as at present –

this is because the “root” user has system wide Administrator permissions so can log in as any other

user at any time for Sysadmin purposes, so you need to know who you are at all times before

issuing commands to prevent serious errors that may damage the system!

“With great power comes great responsibility!”

Beware root user command errors! Whole systems can be destroyed by incorrect command usage!

Don’t EVER use the recursive “remove” command:

rm -vr /*

It will remove the whole root filesystem without warning!!!

stevee@laptop:~$ whoami

stevee

The installer of an Linux OS is given “sudo” or Super User Do permissions, so user stevee can act

as root by logging in as the root user using the sudo user password.

The root user password should be changed immediately the OS is installed for security reasons.

This is achieved using the passwd command with the sudo prefix which temporarily elevates your

sudo allowed user to access root level privileges to accomplish the task:

stevee@laptop:~$ sudo passwd root

[sudo] password for stevee:

New password:

Retype new password:

passwd: password updated successfully

17

17

Day 2: Admin, Users and Groups

The OS has a GUI for adding Users and Groups by searching the Menu button:

18

18

The changeable user options are:

Photo; Account type (admin or standard user); User Name; Password; Group Memberships

As the OS installer, you see I am in the sudo group, which allows me elevation privileges to root

user level so I can manage all aspects of the OS – including all other users!

man sudo

sudo, sudoedit — execute a command as another user

DESCRIPTION

sudo allows a permitted user to execute a command as the superuser or

another user, as specified by the security policy.

sudo supports a plugin architecture for security policies and input/out‐

put logging.

So, sudo “logs” the sudo user's activity, so Admin staff know who did what, when.

Using these Superuser powers, I can add another user to the system who can then login to their own

account when ready. As this is obvious within the User/Groups GUI via the Add button bottom left,

I’ll show you the command line method:

stevee@laptop:~$ sudo adduser mike

Adding user `mike' ...

Adding new group `mike' (1001) ...

Adding new user `mike' (1001) with group `mike' ...

19

19

Creating home directory `/home/mike' ...

Copying files from `/etc/skel' ...

New password:

Retype new password:

passwd: password updated successfully

Changing the user information for mike

Enter the new value, or press ENTER for the default

 Full Name []:

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

Is the information correct? [Y/n]

Note a major difference between the GUI and the Terminal is that the GUI password length

minimum is 8 characters, but the Terminal allows a single character password!

Older Linux systems allowed a blank password via the Terminal method - a security risk. More on

that later.

To view the new user and their defaults in the GUI it needs closing and re-opening:

The new user “mike” is shown a standard privilege user with no group memberships.

So, what if I wanted to elevate new user mike to a sudo admin level user?

20

20

stevee@laptop:~$ sudo addgroup mike sudo

Adding user `mike' to group `sudo' ...

Adding user mike to group sudo

Done.

Now if we look at mike in the GUI, he’s now an Administrator in the sudo group:

Linux is a text file-based OS, so even hardware like hard drives are converted to text file aliases by

the system, which also means that the user and group information is also stored as text files, but

obviously hashed for security reasons by appropriate design.

Some important user and group files to know of relating to admin security are the /etc/group/,

 /etc/passwd and /etc/shadow files. What is inside and why?

Using the command “cat” to read the contents of these files (for concatenate or joining files and

text together, often), we can see the file content.

First, to know all the different groups that comprise a Linux system, look in:

stevee@laptop:~$ cat /etc/group

root:x:0:

daemon:x:1:

bin:x:2:

21

21

sys:x:3:

adm:x:4:syslog,stevee

tty:x:5:

disk:x:6:

lp:x:7:

mail:x:8:

news:x:9:

uucp:x:10:

man:x:12:

proxy:x:13:

kmem:x:15:

dialout:x:20:

fax:x:21:

voice:x:22:

cdrom:x:24:stevee

floppy:x:25:

tape:x:26:

sudo:x:27:stevee,mike

audio:x:29:pulse

dip:x:30:stevee

www-data:x:33:

backup:x:34:

operator:x:37:

list:x:38:

irc:x:39:

src:x:40:

gnats:x:41:

shadow:x:42:

utmp:x:43:

video:x:44:

sasl:x:45:

plugdev:x:46:stevee

staff:x:50:

games:x:60:

users:x:100:

nogroup:x:65534:

systemd-journal:x:101:

systemd-network:x:102:

systemd-resolve:x:103:

crontab:x:104:

messagebus:x:105:

systemd-timesync:x:106:

input:x:107:

sgx:x:108:

kvm:x:109:

render:x:110:

syslog:x:111:

tss:x:112:

22

22

rtkit:x:113:

systemd-coredump:x:114:

lpadmin:x:115:stevee

bluetooth:x:116:

ssl-cert:x:117:

netdev:x:118:

uuidd:x:119:

lightdm:x:120:

nopasswdlogin:x:121:

tcpdump:x:122:

_ssh:x:123:

plocate:x:124:

avahi-autoipd:x:125:

nm-openvpn:x:126:

geoclue:x:127:

pulse:x:128:

pulse-access:x:129:

scanner:x:130:saned

_flatpak:x:131:

avahi:x:132:

saned:x:133:

colord:x:134:

fwupd-refresh:x:135:

stevee:x:1000:

sambashare:x:136:stevee

mysql:x:137:

mike:x:1001:

Remember I just added new user mike to the system? He is shown as a group here also and by

default the user mike is assigned into his own group - mike, but that does NOT show in the GUI,

neither does user stevee in group stevee.

The OS install user group (stevee) starts at number 1000, so group mike as the second user added is

in group number 1001.

Also notice that the sudo group contains users stevee and mike.

This may be a quick way for a sysadmin to check who is in what groups, so what overall system

privileges they have, for example, in a very busy system with many users.

A sysadmin could search this file for a particular username to limit the many lines of output, using

the concept of “piping”, whereby the output of one command becomes the input to another!

Powerful and efficient:

cat /etc/group | grep mike

grep is a character search program that will find all instances of a string in a file or directory.

The | character is called a “pipe”, hence the term “piping” output to input.

23

23

This shows that user mike belongs to groups mike and sudo.

Note that grep colourises the search string on a successful find.

The x in the second column of the /etc/group file means that a password has been set but not shown

in this file for plain text security reasons as it is hashed and logged in the next important file,

/etc/shadow.

As it is a security risk, only root level privileges can access it by user stevee (and now user mike)

becoming root temporarily by the sudo command:

sudo cat /etc/shadow

[sudo] password for stevee:

root:yj9T$sVqSVl60oDMrmZ5bI.aV00$0I9S.ketFYMDc5U9i.eBP67bIETCloj9yxhFH55h9

/1:19664:0:99999:7:::

daemon:*:19343:0:99999:7:::

bin:*:19343:0:99999:7:::

sys:*:19343:0:99999:7:::

sync:*:19343:0:99999:7:::

games:*:19343:0:99999:7:::

man:*:19343:0:99999:7:::

lp:*:19343:0:99999:7:::

mail:*:19343:0:99999:7:::

news:*:19343:0:99999:7:::

uucp:*:19343:0:99999:7:::

proxy:*:19343:0:99999:7:::

24

24

www-data:*:19343:0:99999:7:::

backup:*:19343:0:99999:7:::

list:*:19343:0:99999:7:::

irc:*:19343:0:99999:7:::

gnats:*:19343:0:99999:7:::

nobody:*:19343:0:99999:7:::

systemd-network:*:19343:0:99999:7:::

systemd-resolve:*:19343:0:99999:7:::

messagebus:*:19343:0:99999:7:::

systemd-timesync:*:19343:0:99999:7:::

syslog:*:19343:0:99999:7:::

_apt:*:19343:0:99999:7:::

tss:*:19343:0:99999:7:::

rtkit:*:19343:0:99999:7:::

systemd-coredump:*:19343:0:99999:7:::

kernoops:*:19343:0:99999:7:::

uuidd:*:19343:0:99999:7:::

cups-pk-helper:*:19343:0:99999:7:::

lightdm:*:19343:0:99999:7:::

tcpdump:*:19343:0:99999:7:::

speech-dispatcher:!:19343:0:99999:7:::

avahi-autoipd:*:19343:0:99999:7:::

usbmux:*:19343:0:99999:7:::

nm-openvpn:*:19343:0:99999:7:::

geoclue:*:19343:0:99999:7:::

dnsmasq:*:19343:0:99999:7:::

pulse:*:19343:0:99999:7:::

_flatpak:*:19343:0:99999:7:::

avahi:*:19343:0:99999:7:::

saned:*:19343:0:99999:7:::

colord:*:19343:0:99999:7:::

fwupd-refresh:*:19343:0:99999:7:::

hplip:*:19343:0:99999:7:::

stevee:yj9T$zy7qXwT5wTf01xjDVqFZk0$DRNZMcEBRLrS17j/4GypNtx7VRVnPB72dE

OfAIU/tm3:19561:0:99999:7:::

mysql:!:19572:0:99999:7:::

mike:yj9T$LiMdEWpFhVLlJZForhIPP.$ZweD6APOnCfCF/RLTHQTA0Rvj5op/ew1/FAl

EbSEUp5:19664:0:99999:7:::

This shows that most service groups have an asterisk * in the second column, which means there is

no password set for the group (it wouldn’t make sense having a service password required by the

system to run a service of the system!), but it shows that the groups that have user accounts = root,

stevee and mike, have a long string of characters in the second column that means that a hashed

password HAS been set for the user in that group.

If I open it using vim, its a lot clearer:

sudo vim /etc/shadow

25

25

Here we see that the passwords that are set for users stevee and mike are hashed in the second

column after the colon column separators, starting with y.

There are many types of encryption and “one way hash” methods used for securing passwords (and

other text) in computer systems and the one used for Ubuntu and Mint uses “yescrypt” shown by

the y in /etc/shadow file second column prefix:

yescrypt
 yescrypt is a scalable passphrase hashing scheme designed by Solar Designer, which is based

 on Colin Percival's scrypt. Recommended for new hashes.

 Prefix

 "y"

 Hashed passphrase format

 \$y\$[./A-Za-z0-9]+\$[./A-Za-z0-9]{,86}\$[./A-Za-z0-9]{43}

 Maximum passphrase length

 unlimited

26

26

 Hash size

 256 bits

 Salt size

 up to 512 bits

So why would an Administrator want to know this? Its another possible way to quickly check what

users may not have a password set on their account by checking for the y string in the shadow file

second column – a useful check is whether the root user has had a password added after the initial

system install!

If not, a (!) will be present in the second column, so needs tending to!

sudo cat /etc/shadow | grep 'y*'

root:yj9T$sVqSVl60oDMrmZ5bI.aV00$0I9S.ketFYMDc5U9i.eBP67bIETCloj9yxhFH55h9/1:1

9664:0:99999:7:::

stevee:yj9T$zy7qXwT5wTf01xjDVqFZk0$DRNZMcEBRLrS17j/4GypNtx7VRVnPB72dEOfAI

U/tm3:19561:0:99999:7:::

mike:yj9T$LiMdEWpFhVLlJZForhIPP.$ZweD6APOnCfCF/RLTHQTA0Rvj5op/ew1/FAlEbSE

Up5:19664:0:99999:7:::

Ok, a difficult example to explain…

This shows only the 3 users that have passwords set and hashed by the yescrypt hash process.

If there were more users on the system but not showing here from this search, then they cannot have

had passwords set, so the admin would have to check why not – not a great real-world example, but

you get the point?

We saw from the earlier User and Groups example that it is mandatory to set at least a 1-character

password in this Linux version, but past versions it was not, so blank passwords were possible, so a

security risk.

Linux has certain “special” reserved characters that the OS recognises for command line parsing

purposes, which are:

` Command

Comment

$ Variable

& Background

* String

(Start

) End

\ Quote

| Pipe

[Start

] End

27

27

{ Start

} End

; Shell

' Strong

<"> Weak

< Input

> Output

/ Pathname

? Single-character

! Pipeline

To actually search for these in a text document they have to be “identified” as “non” special to

prevent the system treating them as command line “system code” characters.

In this case, the $ is a special character so has to be pre and post fixed by another special character,

the (' Strong). Also, Linux differentiates between the commands on the command line using white

space between commands and search string characters.

As there is no white space between the y string and the following characters, grep cannot identify

just the y component alone without further wizardry.

The way round this issue is to follow the y with the special “wildcard” character *, which stands

for substitute for “none or any number of characters”, so grep can find just the y part of the whole

associated string:

yj9T$LiMdEWpFhVLlJZForhIPP.$ZweD6APOnCfCF/RLTHQTA0Rvj5op/ew1/FAlEbSEUp5:1

9664:0:99999:7:::

A simpler example of the useful wildcard * character is to find any MP3 files I have in my Music

folder in my Home directory.

find Music/ *mp3

Music/

Music/CarnivalRide

Music/CarnivalRide/03SoSmall.mp3

Music/CarnivalRide/13WheeloftheWorld.mp3

Music/CarnivalRide/04JustaDream.mp3

Music/CarnivalRide/01FlatontheFloor.mp3

Music/CarnivalRide/12Twisted.mp3

Music/CarnivalRide/02All-AmericanGirl.mp3

Music/CarnivalRide/09YouWon'tFindThis.mp3

Music/CarnivalRide/10IToldYouSo.mp3

Music/CarnivalRide/06CrazyDreams.mp3

Music/CarnivalRide/11TheMoreBoysIMeet.mp3

find: ‘*mp3’: No such file or directory

Pattern searching and piping commands in Linux is an art and takes a lot of practice to ensure

particular patterns definitely find what you’re looking for, especially if you are combining delete

28

28

commands! For example, that find command can be amended to delete all those mp3 files once

found:

find Music/ -name *mp3 -delete

Now if I re-run the prior find:

find Music/ *mp3

No output is shown as the Music/CarnivalRide/ folder is empty!

Those mp3 files don’t go into the Rubbish bin either so are not retrievable without special tools.

Irreversible damage can be done by incorrect multiple file deletion commands!

Always make sure you have backups before doing ANY deletion processes and try them first

on a non-essential computer system or folder to be sure the command does what you expect!!

You have been warned!

There are many more pattern examples in my other eBook, “All My IT Knowledge Tech Posts”.

As the history file was mentioned earlier, you can run it to see past commands – both correct and

incorrect, as I was trying to remember the delete option with find - should you want to re-run any by

copying/pasting them again or using an exclamation mark in front of the command number:

history

797 find Music/ -name *mp3

 798 find Music/ -name *mp3 -exec delete {}

 799 find Music/ -name *mp3 -exec delete {}\

 800 find Music/ -name *mp3 -exec delete {}\;

 801 find Music/ -name *mp3 -delete {}\;

 802 find Music/ -name *mp3 -delete

 803 find Music/ -name *mp3

 804 history

!803

Back to file reading and text manipulation – head and tail – it should be obvious that the -3 reads

only the first and last 3 lines of the file in each case:

stevee@laptop:~$ cat /etc/passwd | head -3

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

stevee@laptop:~$ cat /etc/passwd | tail -3

hplip:x:126:7:HPLIP system user,,,:/run/hplip:/bin/false

stevee:x:1000:1000:stevee,,,:/home/stevee:/bin/bash

29

29

mike:x:1001:1001:,,,:/home/mike:/bin/bash

A compact and capable text manipulation programming language called AWK comes with Linux,

which is really good at stripping columns from text files, amongst many other things.

It can be used like cat to read a whole file, like the /etc/passwd example, also piped into tail -3 to

get the same result, where $0 prints all columns, i.e. the whole file.

awk '{print $0}' /etc/passwd | tail -3

stevee:x:1000:1000:stevee,,,:/home/stevee:/bin/bash

mysql:x:127:137:MySQL Server,,,:/nonexistent:/bin/false

mike:x:1001:1001:,,,:/home/mike:/bin/bash

A column delimiter can be set to tell awk which column to identify.

The colon (:) is the delimiter, so that only certain data can be stripped as required.

If I wanted the group number info from column 3 of /etc/passwd, I tell awk which column and

delimiter to use, so:

awk -F: '{print $3}' /etc/passwd | tail -3

1000

127

1001

You can see that the

-F:

states the column delimiter, and the $3 states the column number to print.

If you look at the User/Group GUI group tab you see a list of all system groups in alphabetical

order:

30

30

You can get exactly the same list using Awk by column stripping the /etc/group file but then

ordering it alphabetically by piping into the sort command:

awk -F: '{print $1}' /etc/group | sort

adm

audio

avahi

avahi-autoipd

backup

bin

bluetooth

cdrom

colord

crontab

daemon

dialout

dip

disk

fax

_flatpak

floppy

fwupd-refresh

games

geoclue

31

31

gnats

input

irc

kmem

kvm

lightdm

list

lp

lpadmin

mail

man

messagebus

mike

mysql

netdev

news

nm-openvpn

nogroup

nopasswdlogin

operator

plocate

plugdev

proxy

pulse

pulse-access

render

root

rtkit

sambashare

saned

sasl

scanner

sgx

shadow

src

_ssh

ssl-cert

staff

stevee

sudo

sys

syslog

systemd-coredump

systemd-journal

systemd-network

systemd-resolve

systemd-timesync

tape

32

32

tcpdump

tss

tty

users

utmp

uucp

uuidd

video

voice

www-data

Powerful stuff! And so quick! You can strip data from all sorts of text files like CSV - comma

separated values files - or tab delimited database files etc. This is difficult to do in a word processor

as it requires more copy and cut actions to isolate columns from lines.

Day 3: File and Directory Permissions

What is a directory or file?

Unix/Linux sees “everything” in its system as a file of some type.

Both folders and files are reserved “areas” in a “file system” – in memory or a hard drive, for

example - that has an amount of available “space” allocated for its use, that may or may not contain

data (an empty directory or file).

A file has to have a directory to define it. Why?

The create/delete/rename and permissions data is stored in the parent directory, because that is

where the name to data space mapping is stored.

This means the owner of a directory containing another users file may be able to delete it, even

though they don't own the file or can't write to the file, depending on how the permissions are set on

either the parent directory or the file.

So, file protection has to be considered by the write bits on the container and who or what

User/Group/Others (UGO) can access the directory - BEWARE 777 permissions on a directory or

file!

Anyone may be able to Read, Write (so delete) or eXecute (run) the contents!!

First, what does all this UGO, RWX and decimal 777 mean?

To understand these concepts, its necessary to understand what defines anything in terms of 1s or 0s

in a computer system, which is based on the binary mathematical system.

Binary values are two relative voltages set as the electrical states of billions of transistors inside the

CPU, memory, hard drive or other electrical hardware that comprises a computer system, usually

0V and 5V, but may be other values in lower power, more efficient systems e.g. 0V and 3.6V,

positive or negative etc.

33

33

These 1s and 0s have to be counted and ordered according to “rules” or “protocols” to have any

meaning, by programmes designed to group them in specific ways (a protocol) so they make sense

when read by components and software in any system according to design need, instead of being

just an arbitrary stream of 1s and 0s stored somewhere or streamed through a connection.

Smaller groups of bits are counted then combined together (according to a specific rule set or

protocol) to form larger “structures” of different names, according to different protocols (bytes,

packets, datagrams, frames, containers etc.), in a process called “encapsulation”.

You can read a Post I wrote called “From Bits to Gigabytes in 200 Years”, explaining this in more

detail in my eBook “All My IT Knowledge Posts”.

A practical Linux example helps to explain how protocol defined, ordered bits and bytes can

represent different human language letters, so are a foundational concept in human/machine

communication, enabling more complex yet easier to read programming languages to have been

developed since the early days of computing, when programs were written in binary (base 2), octal

(base 8) or hexadecimal (base 16) mathematics using punch cards! Tedious and time consuming!

Open a Terminal and create an empty file in your Home directory:

stevee@laptop:~$ cd

stevee@laptop:~$ touch Test.txt

In the GUI, you will see the file listed with its size (0) in bytes:

34

34

I can also list this in the Terminal to show info about the file:

stevee@laptop:~$ ls -l Test.txt

-rw-rw-r-- 1 stevee stevee 0 Nov 11 13:29 Test.txt

The size on disk is also shown as 0 bytes in the 5th column, as covered on Day 1.

If I now add a letter to the file, without adding invisible “Control” characters, (which may occur

using text editor), using the command line:

stevee@laptop:~$ echo -n A >> Test.txt

stevee@laptop:~$ ls -l Test.txt

-rw-rw-r-- 1 stevee stevee 1 Nov 11 13:39 Test.txt

I see the size on disk has increased to 1 byte, in the Terminal and the GUI:

35

35

If I open the file with the Text editor I see the file contains the letter A:

To prove that a letter does actually occupy 1 byte of disk space, I add another 7 letters:

stevee@laptop:~$ echo -n BCDEFGH >> Test.txt

stevee@laptop:~$ ls -l Test.txt

-rw-rw-r-- 1 stevee stevee 8 Nov 11 13:44 Test.txt

36

36

The GUI has updated to reflect the size change also – 1 byte per character!

The text editor, on reload shows the new contents:

This shows that each character comprises 8 bits (1 byte) of data, which can represent a particular

letter, depending on how the software is designed to read those bits in that alphabetical form,

according to a specific protocol, so it is readable by humans.

To aid further understanding of computer text Standards, google William Shott's excellent free

Linux guide, The Linux Command Line, TLCL.PDF.

To get an idea of just some protocols that are listed in a Linux system, to enable all sorts of different

networking operations:

stevee@laptop:~$ getent protocols

37

37

Similarly, ALL data that makes up an OS filesystem is designed and stored in such ways to be

manipulated by particular software programs to be of use to humans, by that data having particular

attributes set against it, so it is useful, especially for security and access.

A database is a particularly good example of “ordered” sets of data that represent an analogy of

something that exists in the real world, the traits of a human for example – name, age, address etc.

Read my Database research paper for more information in my other eBook, “All My IT Knowledge

Posts”.

To prevent unwarranted damage or manipulation of file data, security mechanisms were developed

to protect the state of the 1s and 0s that make up a particular data structure, which in Linux (and

other) filesystems are called “permissions” that are set against folders and files using 3 blocks of 3

bytes that allow access (or not) to a particular file or folder according to which combinations of

Users, Groups or Others (UGO) access values are set on a particular folder or file.

This system is shown in the first column of file attributes, by the list command:

stevee@laptop:~$ ls -l Test.txt

-rw-rw-r-- 1 stevee stevee 8 Nov 11 13:44 Test.txt

The first character (-) denotes a file, but can be other letters such as a (d) for directory, or a (b) for a

block device like a hard drive (remember that everything in a linux system is aliased as a file, even

hardware):

38

38

stevee@laptop:~$ ls -l /dev/sda

brw-rw---- 1 root disk 8, 0 Nov 11 11:34 /dev/sda

The next 9 characters are the 3 blocks of 3 RWX,RWX,RWX blocks that relate to the Users, Groups

or Others (UGO) concept.

Each block is a decimal value of 000-777, where:

Read = 4

Write = 2

Exe = 1

All add up to 7 max (i.e. octal, 0-7), for each UGO block. e.g.

r+w = 6 (4+2) = (110 binary)

r+x = 5 (4+1) = (101 binary)

r+w+x = 7 (4+2+1) = (111 binary)

--- = 0 (0+0+0) = (000 binary)

So, what’s the practicality of this system?

It means that a Sysadmin has at least 3 ways to manipulate the permissions, so the access to, a

particular folder or file – using the GUI, or the two similar Terminal methods:

To change file permissions in the GUI, you can right click a files Properties and use the Permissions

tab:

39

39

For those trying to use Windows WSL linux, the Windows OS permissions override the linux

permissions, so the section below won’t work without modifying /etc/wsl.conf, by adding:

[automount]
enabled = true
root = /mnt/
options = "metadata,umask=22,fmask=11"

A reboot may be required, but try closing and opening WSL first.

To use the Terminal chmod (change mode) command, for example, to make a file eXecutable (so it

could run as a program):

stevee@laptop:~$ chmod +x Test.txt

stevee@laptop:~$ ls -l Test.txt

-rwxrwxr-x 1 stevee stevee 8 Nov 11 13:44 Test.txt

or:

stevee@laptop:~$ chmod 777 Test.txt

stevee@laptop:~$ ls -l Test.txt

-rwxrwxrwx 1 stevee stevee 8 Nov 11 13:44 Test.txt

In each case, the file has been made executable for all members of all Users/Groups/Others

40

40

This is a maximum access, minimum security setting for a file! Hence beware 777 permissions, as

anyone with system access could delete, modify or execute the file!

Conversely, a file with 000 permissions is totally inaccessible by anyone in any way (except root of

course to modify it again), so practically useless, except for a short-term security protection for

some reason?

stevee@laptop:~$ chmod 000 Test.txt

stevee@laptop:~$ ls -l Test.txt

---------- 1 stevee stevee 8 Nov 11 13:44 Test.txt

Note the black X for inaccessible for the Test.txt file. Changing it back to defaults for standard

access:

stevee@laptop:~$ chmod 664 Test.txt

How do you read a files permissions in terms of the decimals?

stevee@laptop:~$ stat -c '%a' Test.txt

664

The default “create” permissions for folders and files in Linux represent a balance between access

and security for the owners (creators) of a folder or file, as well as file system traversal by Group

users and Others – 775 for folders, and 664 for files:

41

41

stevee@laptop:~$ mkdir newdir

stevee@laptop:~$ stat -c '%a' newdir/

775

stevee@laptop:~$ touch newfile.txt

stevee@laptop:~$ stat -c '%a' newfile.txt

664

Folder traversal is made possible by the default creation value of 775:

5 (4+1 = Read + Exe), as it´s the 5 (x) value that allows traversal through a folder nest by Others.

The 5 is trumped by the 7s for Users/Groups, so traversal (x=1) as well as Read and Write

permissions is included in the value of 7 for Users/Groups. (Read = 4 + Write = 2 + eXe =1, total

=7), so User/Group/Others traversal is a default condition of any newly created user directory.

However! As you will see in the Shared Group example below, both the root (/) directory and all

users Home directories are restricted to root user access and the respective Home directory users

access by default at the OS install and for new user account creation. This means a Standard user

cannot roam freely anywhere they like, for obvious security and other user account privacy reasons.

It pays to experiment with the chmod command on a test file to see the effects different values (000-

777) for different Users/Groups/Others makes, so what access different users and groups have,

remembering the ownership aspects on a file and the files parent directory.

Shared Group Directory example:

A practical but hypothetical example may be user mike being a Dept. Head who creates a shared

project folder for other users to collaborate on files with.

As the Project Manager and directory creator/owner he may have total responsibility for the shared

folder contents access and security, and possibly the users file content also, depending on

requirements.

It may be better to create a project group first to add other users to, including himself, for cleaner

system admin. To do this as sudo user stevee, I need to become user mike:

stevee@laptop:~$ sudo su mike

To run a command as administrator (user "root"), use "sudo <command>".

See "man sudo_root" for details.

mike@laptop:/home/stevee$ sudo addgroup mikeproject1

[sudo] password for mike:

Adding group `mikeproject1' (GID 1002) ...

Done.

Now let’s look at the initial member status of group mikeproject1, using grep to find the string mike

in any form:

42

42

mike@laptop:/home/stevee$ cat /etc/group | grep mike

sudo:x:27:stevee,mike

mike:x:1001:

mikeproject1:x:1002:

The group mikeproject1 has no users at present, unlike group sudo.

Mike wants to add user stevee and himself to his new group:

mike@laptop:/home/stevee$ sudo gpasswd -M stevee,mike mikeproject1

mike@laptop:/home/stevee$ cat /etc/group | grep mike

sudo:x:27:stevee,mike

mike:x:1001:

mikeproject1:x:1002:stevee,mike

The comma separated list, stevee,mike, adds those users to group mikeproject1, but checking to cd

into his own Home directory first, not stevee’s!

Now mike can create a directory to house shared access files:

mike@laptop:/home/stevee$ cd

mike@laptop:~$ mkdir mikeprojects

mike@laptop:~$ ls -ld /home/mike/mikeprojects/

drwxrwxr-x 2 mike mike 4096 Nov 11 17:23 /home/mike/mikeprojects/

You can see the default directory permissions are drwxrwxr-x = 775 but the folder belongs to user

and group mike not to the mikeproject1 group.

This can be changed with the change owner command, sudo chown:

 mike@laptop:~$ sudo chown mike:mikeproject1 mikeprojects/

mike@laptop:~$ ls -ld /home/mike/mikeprojects/

drwxrwxr-x 2 mike mikeproject1 4096 Nov 11 17:23 /home/mike/mikeprojects/

The group owner is now shown in the 4th column.

The problem is that access to mike’s Home directory, where the project folder is housed, is

inaccessible to all but user mike!

43

43

Why are all users Home directories inaccessible except by the user/owner by default?

Its a combination of directory owner and the permissions set, for obvious user security reasons. You

don’t want everyone else having access to your account from elsewhere on the system or over a

network, if the PC is connected to one!:

stevee@laptop:~$ ls -l /home/

total 8

drwxr-x--- 14 mike mike 4096 Nov 11 17:23 mike

drwxr-x--- 20 stevee stevee 4096 Nov 11 17:13 stevee

You can see that Users/Groups/Others is set to rwxr-x---, which in principle allows directory

traversal for user mike and group mike, by the Home directory creation default value 750, but

ONLY to the directory owner. So how to allow traversal access to the group mikeproject1?

mike@laptop:~$ stat -c '%a' .

750

Mike can use the chown command on his Home directory for part ownership by the mikeproject1

Group:

mike@laptop:~$ chown mike:mikeproject1 /home/mike

mike@laptop:~$ ls -l /home/

total 8

44

44

drwxr-x--- 14 mike mikeproject1 4096 Nov 11 17:23 mike

drwxr-x--- 20 stevee stevee 4096 Nov 11 17:13 stevee

Now mike’s Home folder is accessible to stevee, the X has gone:

However, this is NOT ideal, as now ALL mike’s sub folders are also accessible to all other members

of the mikeproject1 Group due to the inheritance of the parent Home directory permissions. This is

not desirable as it´s insecure for mike’s folders, as the content is viewable to all users in the

mikeproject1 group!

45

45

A better way would be to move the mikeprojects folder to the root directory to avoid messing up

mike’s Home directory privacy, then changing mike’s Home directory permissions back to their

original 750 values. Mike can move his folder to the root directory because he has sudo privileges

after being made a member of the sudo group, remember?:

mike@laptop:~$ sudo mv -v /home/mike/mikeprojects/ /

[sudo] password for mike:

renamed '/home/mike/mikeprojects/' -> '/mikeprojects'

mike@laptop:~$ chmod 750 /home/mike/

mike@laptop:~$ ls -l /home/

total 8

drwxr-x--- 13 mike mikeproject1 4096 Nov 11 18:00 mike

drwxr-x--- 20 stevee stevee 4096 Nov 11 17:13 stevee

mike@laptop:~$ ls /

bin dev lib libx32 mikeprojects proc sbin sys var

boot etc lib32 lost+found mnt root srv tmp

cdrom home lib64 media opt run swapfile usr

46

46

Again, not totally ideal, as if everyone did this, the root directory would become cluttered with

shared folders. Better to create one Shared folder on the / root directory with totally open, 777

permissions, for all users to create and then lockdown their personal, shared folders within that

Shared folder.

I hope the example illustrates basic ideas about the many real-world requirements and combinations

possible with the Linux permissions system, as well as some pitfalls to watch out for with the

combination of permissions and ownerships?

So, does mike’s root directory shared Project folder fulfil its purpose of the project Group members

needs to access, create, amend, share and for mike to delete their content?

Yes, user stevee can create a folder and a file in the /mikeprojects folder after we exit out of mike’s

account to become stevee again:

mike@laptop:~$ exit

stevee@laptop: cd /mikeprojects

stevee@hplaptop:/mikeprojects$ mkdir SteveFolder1

stevee@hplaptop:/mikeprojects$ touch stevefile1.txt /mikeprojects/

47

47

Can user mike delete stevee’s folder and files even though he does not own them? Yes! Due to the

ownership permissions that he has on the /mikeprojects parent folder, even though he does not own

stevee’s file!

stevee@hplaptop:/mikeprojects$ su mike

Password:

mike@hplaptop:/mikeprojects$

mike@hplaptop:/mikeprojects$ rm -v /mikeprojects/stevefile1.txt

rm: remove write-protected regular empty file '/mikeprojects/stevefile1.txt'? y

removed '/mikeprojects/stevefile1.txt'

mike@laptop:~$ ls -l /mikeprojects/

total 4

drwxrwxr-x 2 stevee stevee 4096 Nov 11 18:11 SteveFolder1

mike@hplaptop:/mikeprojects$ rmdir SteveFolder1/

mike@hplaptop:/mikeprojects$ ls -l

total 0

If mike creates a file, can user stevee delete or amend it?

mike@laptop:~$ touch /mikeprojects/mikefile.txt

mike@laptop:~$ ls -l /mikeprojects/

48

48

total 4

-rw-rw-r-- 1 mike mike 0 Nov 11 18:16 mikefile.txt

drwxrwxr-x 2 stevee stevee 4096 Nov 11 18:11 SteveFolder1

No! User stevee cannot delete mike’s file because it is in mike’s parent directory and stevee does

not own the file!

stevee@laptop:~$ rm -v /mikeprojects/mikefile.txt

rm: remove write-protected regular empty file '/mikeprojects/mikefile.txt'? y

rm: cannot remove '/mikeprojects/mikefile.txt': Permission denied

This fulfils the original requirement of mike being the project manager with overall control of the

contents of the shared Projects directory, but still allows project Group users to create and amend

their own files in that folder that are readable by other group members, but they cannot delete or

amend those files of other Group users. Only users mike and root can do that, unless sudo is

invoked by other users with that sudo admin permission.

It’s a combination of individual folder/file permissions and parent directory ownership that

decides overall access to file system content.

There are other “special” file permissions beyond the scope of this text, for your research, such as

the “sticky bit” and hidden/undeletable files properties that can be set with the chattr and read by

lsattr commands. Read their man pages e.g:

man chattr

…

i A file with the 'i' attribute cannot be modified: it cannot be

 deleted or renamed, no link can be created to this file, most of

 the file's metadata can not be modified, and the file can not be

 opened in write mode. Only the superuser or a process possess‐

 ing the CAP_Linux_IMMUTABLE capability can set or clear this at‐

 tribute.

Ever had a situation where you could not recursively remove some directories due to one or more

files having a permission that even root could not take control of? Did you ever find out why?

I have had this scenario on a backup drive, with Windows files having an attribute set from being

copied from a compressed Win file system, which would not then allow root to remove it when the

external drive was attached to a Linux box.

Infuriating - as it meant I could not delete the whole, non-empty directory with this file under it.

I ended up re-attaching the drive to a Win PC, then taking ownership that way, before I could delete

the file with the special attribute, and then returning the drive to a Linux system for full control,

short of just formatting the drive completely in Linux and losing everything else of course.

In a similar vein for special file attributes, Linux can prevent file deletion to all users, including

root, using the chattr command.

49

49

Day 4: File Permissions, Network Access via Samba

After sleeping on the complexity yet elegance of permissions, think of the ways and

consequences of sharing files with other users using:

1 chmod 777

Not usually, only for traversal access. 777 = write for Others (Anyone can delete files or folders)

2 chmod 755

Common, sets security access for the folder/file user only

3 chmod 775

Common, sets security access for user and group access only, gives Others traversal access to sub

folders

4 chmod 770

Common and secure, sets security access for user and group access only, with NO Others access or

traversal at all

5 chmod 000

Rare. It renders a folder/file inaccessible. May be a temporary anti hacking measure for a

compromised system, unless the attacker has root privileges anyway?

6 chmod 700

Useful. This can make a directory inaccessible to all but the user/owner, so private.

What else has to be set up re Users and Groups?

Users added to appropriately created or existing Groups

What other non-octal chmod method is available?

Variations on the form:

chmod ugo -rwx /filename

Are there local and network access differences to consider – e.g. local and network passwords

- Samba ?

Yes, network access permissions on Linux are setup in a text file you can read in:

stevee@laptop:~$ vi /etc/samba/smb.conf

It is very complicated overall with a lot of parameters, but the most basic network access usually

required is to give a user network access to their own Home directory on other networked PCs they

have an account on by uncommenting the (;) semicolons in the section:

#======================= Share Definitions =======================

Un-comment the following (and tweak the other settings below to suit)

to enable the default home directory shares. This will share each

user's home directory as \\server\username

50

50

;[homes]

; comment = Home Directories

; browseable = no

By default, the home directories are exported read-only. Change the

next parameter to 'no' if you want to be able to write to them.

; read only = yes

File creation mask is set to 0700 for security reasons. If you want to

create files with group=rw permissions, set next parameter to 0775.

; create mask = 0700

Directory creation mask is set to 0700 for security reasons. If you want to

create dirs. with group=rw permissions, set next parameter to 0775.

; directory mask = 0700

By default, \\server\username shares can be connected to by anyone

with access to the samba server.

Un-comment the following parameter to make sure that only "username"

can connect to \\server\username

This might need tweaking when using external authentication schemes

; valid users = %S

Samba may need to be installed to allow access to other PCs on a network

stevee@laptop:~$ sudo apt install samba

This is beyond this documents scope to show as I am not on a network. More research for you if

you want to experiment with networked PCs...

It may be necessary for a user to have a samba network password setup as well as their normal

account login password to access another PC over the network, using:

stevee@laptop:~$ sudo smbpasswd -a stevee

New SMB password:

Retype new SMB password:

Added user stevee.

I mention it to explain a principle, that ultimately, the individual file permissions on a PC dictate the

access level, so usually, any network access permissions are very loose in comparison to ensure the

user can at least connect to the remote system and access a login box at least.

 Final Thoughts

Correct security settings on any system are crucial, so file permission familiarity requires practise

with testing to be sure you know what really happens. Mistakes are easy here!

51

51

Day 5: Package Installation, Programming Environments, Backups

The Linux system and software packages are stored in “online repositories” and are regularly

changed and updated.

To get an idea how many different packages are available for a given flavour of Linux – Mint,

Ubuntu, Debian etc:

 stevee@laptop:~$ apt-cache pkgnames | wc -l

76992

Nearly 77k different software packages and their dependencies at this time of writing!

Some software that is not available in the managed repositories is available online from other

authors and packaged with a .deb extension, the most common probably being the google chrome

browser. For a new Linux install, it has to be downloaded from google:

Once downloaded, it can be double clicked:

52

52

The package management software installs it and any dependencies required:

53

53

After this, the updates are handled along with all others by the Update Manager. The update

commands are:

stevee@laptop:~$ sudo apt update

[sudo] password for stevee:

Get:1 http://security.ubuntu.com/ubuntu jammy-security InRelease [110 kB]

Get:2 https://ppa.launchpadcontent.net/obsproject/obs-studio/ubuntu jammy InRelease [18,1 kB]

Hit:3 https://ppa.launchpadcontent.net/ondrej/php/ubuntu jammy InRelease

Get:4 https://ppa.launchpadcontent.net/obsproject/obs-studio/ubuntu jammy/main amd64 Packages

[1.124 B]

Hit:5 http://mirrors.eze.sysarmy.com/ubuntu jammy InRelease

Get:6 http://mirrors.eze.sysarmy.com/ubuntu jammy-updates InRelease [119 kB]

Hit:7 https://dl.google.com/Linux/chrome/deb stable InRelease

Get:8 http://mirrors.eze.sysarmy.com/ubuntu jammy-backports InRelease [109 kB]

Ign:9 https://mirror.rackspace.com/Linuxmint/packages victoria InRelease

Get:10 http://mirrors.eze.sysarmy.com/ubuntu jammy-updates/main amd64 DEP-11 Metadata [101

kB]

Get:11 http://mirrors.eze.sysarmy.com/ubuntu jammy-updates/universe amd64 DEP-11 Metadata

[305 kB]

Get:12 http://mirrors.eze.sysarmy.com/ubuntu jammy-updates/multiverse amd64 DEP-11 Metadata

[940 B]

Get:13 http://mirrors.eze.sysarmy.com/ubuntu jammy-backports/main amd64 DEP-11 Metadata

[4.944 B]

54

54

Get:14 http://mirrors.eze.sysarmy.com/ubuntu jammy-backports/universe amd64 DEP-11 Metadata

[18,8 kB]

Hit:15 https://mirror.rackspace.com/Linuxmint/packages victoria Release

Fetched 787 kB in 17s (46,0 kB/s)

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

2 packages can be upgraded. Run 'apt list --upgradable' to see them.

stevee@laptop:~$ sudo apt upgrade

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

Calculating upgrade... Done

The following packages will be upgraded:

 firefox firefox-locale-en

2 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Need to get 0 B/71,2 MB of archives.

After this operation, 189 kB disk space will be freed.

Do you want to continue? [Y/n]

Linux as a Programming Environment

Linux can be used as an effective programming environment, though the industry standard GUI at

the moment is MS Visual Studio Code, which is free from, and for MS Windows.

I will show 3 common programming language examples for the same Prime Numbers printing

programme and what is required to compile and run them.

C programme language script:

#include <stdio.h>

#include <math.h>

int main()

{

int i,j;

int a;

int input;

printf("Input prime limit eg < 1000..");

scanf("%d", &input);

for(i=2; i<input; i=i+1)

{

a=0;

for(j=2; j<i; j=j+1)

if (i%j == 0)

a=1;

if (a == 0)

55

55

printf("%d ", i);

}

return 0;

}

On your computer, copy this script into a text file using the Text editor, save it as Cprimes.c in your

Home directory and view it with vim:

stevee@laptop:~$ vi Cprimes.c

As you see, Vim colourises the code according to Theme and C language automatically.

56

56

First, view the source code file permissions in /Home with ls :

stevee@laptop:~$ ls -l

total 48

drwxrwxr-x 3 stevee stevee 4096 Nov 7 23:28 'Calibre Library'

-rw-rw-r-- 1 stevee stevee 257 Nov 11 21:27 Cprimes.c

View the code on the command line:

stevee@laptop:~$ cat Cprimes.c

#include <stdio.h>

#include <math.h>

int main()

{

int i,j;

int a;

int input;

printf("Input prime limit eg < 1000..");

scanf("%d", &input);

for(i=2; i<input; i=i+1)

{

a=0;

for(j=2; j<i; j=j+1)

if (i%j == 0)

a=1;

if (a == 0)

57

57

printf("%d ", i);

}

return 0;

}

Now compile it with GNU C Compiler:

cc -v Cprimes.c -o primes.prog

Now run the compiled executable file, primes.prog:

stevee@laptop:~$./primes.prog

Input prime limit eg < 1000..999

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127

131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251

257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389

397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541

547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677

683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839

853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997

The last prime number under 1000 is 997. You can experiment with a range up to 100000 which

took 21 seconds on my old dual core laptop.

58

58

A similar program written in Python:

Copy the code (red) into a text file called PythonPrimes.py using a Text editor, as Python has to be

Tab indented correctly to run:

upper = 100000

for i in range(2, upper + 1):

 for j in range(2, i):

 if (i % j) == 0:

 break

 else:

 print(i, end=' ')

print(" Done")

It is NOT executable yet! No x permissions:

stevee@laptop:~$ ls -l PythonPrimes.py

-rw-rw-r-- 1 stevee stevee 198 Nov 11 21:47 PythonPrimes.py

To run the file, it needs to be made executable. The Python libraries installed in Linux should run it:

stevee@laptop:~$ chmod +x PythonPrimes

stevee@laptop:~$ ls -l PythonPrimes

-rwxrwxr-x 1 stevee stevee 198 Nov 11 21:47 PythonPrimes.py

See the difference in x file attributes covered in Day 4?

Now run it:

stevee@laptop:~$ python3 PythonPrimes.py

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 Done

Change the range as you want by editing the code.

To print to 100,000 this program took 75 secs:

This slow speed (compared to the C example) is a consequence of many factors beyond the scope of

this text. Python is generally a very fast language.

... 99721 99733 99761 99767 99787 99793 99809 99817 99823 99829 99833 99839 99859 99871

99877 99881 99901 99907 99923 99929 99961 99971 99989 99991 Done

Java requires the Developer Kit installed:

stevee@laptop:~$ sudo apt-get install openjdk-19-jdk

View the source code:

cat primes.java

59

59

public class primes {

 public static void main(String args[]) {

 int i, j, a;

 int limit = 100000;

 for (i = 2; i <= limit; i = i + 1) {

 a = 0;

 for (j = 2; j < i; j = j + 1)

 if (i % j == 0)

 a = 1;

 if (a == 0)

 System.out.print(" " + i);

 }

 System.out.print(" Done\n");

 }

}

Compile the code – the file primes.class is created:

javac primes.java

The java command id's the class file and runs it:

java primes

.. 99809 99817 99823 99829 99833 99839 99859 99871 99877 99881 99901 99907 99923 99929

99961 99971 99989 99991 Done

This took 24 seconds. Slower than C but faster than Python, but bear in mind, the scripts are not

technically identical between languages, so operation.

These programs are very inefficient because they re-run the division by 2 Prime check as each new

prime is found, so waste more and more cycles as the amount of primes found increases.

A better algorithm for finding prime numbers you can research is the “Eratosthenes Sieve”.

The examples are to show the flexibility and convenience of the Linux system and its associated

software.

Disaster Prevention: Backups

I can tell you, from IT industry experience within a small printing firm. that I’ve seen a Director

almost in tears of desperation when a client list was lost due to insufficient interest in taking the

company’s data value seriously until it was too late and the only client list copy (so he thought) was

lost forever from his PC after a crash, because he was always “too busy right now” to learn how, or

let me back up his PC system adequately and set up scheduled daily backups after hours etc.

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

60

60

Nowadays, most OS’s have “snapshot” style Applications built in like Timeshift to take copies of

the system files to guard against crash corruption and/or accidental or malicious deletion (viral

infection etc.).

All very well, but unless that snapshot is saved on a different drive external to the PC, all will still

be lost if the PC hard drive fails or data is deleted or irreversibly corrupted!

I prefer to use Terminal methods to keep backups of my data as it is a consistent process, rather than

learning various GUI backup packages.

I have multiple SSD drives of varying sizes, as the cost per gigabyte is very low now and using a

USB dongle connector similar to this:

61

61

I can connect SSDs directly to my laptop USB and run rsync – a very fast, differential file copy

utility.

Differential means that once an initial full copy of all the files you want to backup is done, then

backup runs after that only update the files that have changed, not everything, so saves a lot of time.

You can do a simple backup of your Pictures folder contents to your Music folder to understand the

format – remember the * means none or any character, so covers all possible file names in a folder:

stevee@laptop:~$ rsync Pictures/* Music/ -vahn

sending incremental file list

WebCamBlurred.png

sent 75 bytes received 19 bytes 188,00 bytes/sec

total size is 991,68K speedup is 10.549,84 (DRY RUN)

If you wanted the whole Pictures folder and its contents transferred, not just the contents, the subtle

difference is:

rsync Pictures Music/ -vahn

The switches: -vahn means:

-v verbose (gives more user info during the process)

-a archive (runs in recursive mode to copy all files and sub folder contents)

-h (gives file sizes in human readable format e.g. MB)

-n (DRY RUN) – This MUST be run every time to check that the command is doing what you think

it is! If you ran certain -delete copy options then you may delete files you did not intend, so get in

the habit of using the -n DRY RUN option before you run the command for real!!

Read :

man rsync

NAME

62

62

 rsync - a fast, versatile, remote (and local) file-copying tool

When you are happy rsync is copying what you want correctly, remove the -n from -vahn and run

the command for real.

For the content only:

stevee@laptop:~$ rsync Pictures/* Music/ -vah

sending incremental file list

WebCamBlurred.png

sent 992,04K bytes received 35 bytes 1,98M bytes/sec

total size is 991,68K speedup is 1,00

stevee@laptop:~$ ls Music/Pictures/

WebCamBlurred.png

For the Pictures folder with content:

stevee@laptop:~$ rsync Pictures Music/ -vah

sending incremental file list

Pictures/

Pictures/WebCamBlurred.png

sent 992,08K bytes received 39 bytes 1,98M bytes/sec

total size is 991,68K speedup is 1,00

This is subtle but important difference to appreciate so you don’t end up copying or merging folders

incorrectly, say, with a folder copied inside another of the same name, wasting space and causing

messy filesystems etc.

I use the rsync command a lot.

It can be used with compression and SSH encryption across slower network links too.

A major realisation I made and developed was being able to clone a working Linux install to a fresh

install of the same flavour or repairing a running but partially corrupt installation.

It involved working out what dynamic, temporary processes needed to be skipped to prevent the

copy process interfering with a running installation then changing the UID numbers back to their

original values in the files:

 stevee@laptop:~$ vi /boot/grub/grub.cfg

and

stevee@laptop:~$ vi /etc/fstab

63

63

before rebooting the PC again.

If this sounds to complex, don’t worry about understanding it at a beginner level.

Its further described in my other eBook “All My IT Knowledge Posts” – full of many more topics I

have explored over the last 20 years of being a Linux hobbyist, IT and comms tech.

I cannot stress enough that keeping as many backups of all your important folders and files across

as many different media types as possible will save you much angst – use Gdrive, Gmail

attachments, pen drives, SD cards, SSD drives, your cell phone and whatever else you can afford to

keep as many versions of your data as you can! You won’t regret it.

I hope this book fulfils its intent of being a suitable introduction to some interesting and useful

topics and acts as a catalyst for further study for those of the right inclination.

Linux has provided me with a massive technical education because of its open-source model, as the

system is open to investigation being non-proprietary, with a massive online support from very

experienced Linux admin gurus providing free information on all types of issues.

It has enabled me to understand the workings of computer systems, data, network and electrical

processes at a much deeper level than would have been possible with just the limited access that

Windows offered historically, thankfully much improved nowadays, due to the necessary inter-

operation of Windows and Linux systems worldwide as part of the WWW network.

